首页> 外文OA文献 >Diffuse-Interface Two-Phase Flow Models with Different Densities: A New Quasi-Incompressible Form and a Linear Energy-Stable Method
【2h】

Diffuse-Interface Two-Phase Flow Models with Different Densities: A New Quasi-Incompressible Form and a Linear Energy-Stable Method

机译:具有不同密度的扩散界面两相流模型:一种新的   准不可压缩形式和线性能量稳定方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While various phase-field models have recently appeared for two-phase fluidswith different densities, only some are known to be thermodynamicallyconsistent, and practical stable schemes for their numerical simulation arelacking. In this paper, we derive a new form of thermodynamically-consistentquasi-incompressible diffuse-interface Navier-Stokes Cahn-Hilliard model for atwo-phase flow of incompressible fluids with different densities. Thederivation is based on mixture theory by invoking the second law ofthermodynamics and Coleman-Noll procedure. We also demonstrate that our modeland some of the existing models are equivalent and we provide a unificationbetween them. In addition, we develop a linear and energy-stabletime-integration scheme for the derived model. Such a linearly-implicit schemeis nontrivial, because it has to suitably deal with all nonlinear terms, inparticular those involving the density. Our proposed scheme is the first linearmethod for quasi-incompressible two-phase flows with nonsolenoidal velocitythat satisfies discrete energy dissipation independent of the time-step size,provided that the mixture density remains positive. The scheme also preservesmass. Numerical experiments verify the suitability of the scheme for two-phaseflow applications with high density ratios using large time steps byconsidering the coalescence and break-up dynamics of droplets includingpinching due to gravity.
机译:尽管最近出现了密度不同的两相流体的各种相场模型,但只有一些是热力学一致的,并且缺乏用于数值模拟的实用稳定方案。在本文中,我们导出了一种新形式的热力学一致准不可压缩扩散界面Navier-Stokes Cahn-Hilliard模型,用于不同密度的不可压缩流体的两相流。该推导基于混合理论,通过调用热力学第二定律和Coleman-Noll程序。我们还证明了我们的模型和某些现有模型是等效的,并且在它们之间提供了统一。此外,我们为导出的模型开发了线性且能量稳定的时间积分方案。这样的线性隐式方案是不平凡的,因为它必须适当地处理所有非线性项,特别是涉及密度的项。我们提出的方案是具有非电磁速度的拟不可压缩两相流的第一个线性方法,该方法满足离散能量的消耗,与时间步长无关,前提是混合物的密度保持为正。该方案还保留了质量。数值实验通过考虑液滴的聚结和破裂动力学(包括由于重力引起的收缩),验证了该方案适用于使用大时间步长的高密度比两相流应用的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号